Abstract

We present a method to detect the presence and depth of dark solitons within repulsive one-dimensional harmonically trapped Bose-Einstein condensates. For a system with one soliton, we provide numerical evidence that the shift of the density in Fourier space directly maps onto the depth of the soliton. For multi-soliton systems, combining our spectral method with established imaging techniques, the character of the solitons present in the condensate can be determined. We verify that the detection of solitons by the spectral shift works in the presence of waves induced by density engineering methods. Finally we discuss implications for vortex detection in three-dimensional Bose-Einstein condensates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.