Abstract

Variability of tow orientation is unavoidable for biaxial engineering fabrics and their composites. Since the mechanical behaviour of these materials is strongly dependent on the fibre direction, variability should be considered and modelled as exactly as possible for more realistic estimation of their forming and infusion behaviour and their final composite mechanical properties. In this study, a numerical code, ‘VariFab’, has been written to model realistic full-field variability of the tow directions across flat sheets of biaxial engineering fabrics and woven textile composites. The algorithm is based on pin-jointed net kinematics and can produce a mesh of arbitrary perimeter shape, suitable for subsequent computational analysis such as finite element forming simulations. While the shear angle in each element is varied, the side-length of all unit cells within the mesh is constant. This simplification ensures that spurious tensile stresses are not generated during deformation of the mesh during forming simulations. Variability is controlled using six parameters that can take on arbitrary values within certain ranges, allowing flexibility in mesh generation. The distribution of tow angles within a pre-consolidated glass–polypropylene composite and self-reinforced polypropylene and glass fabrics has been characterised over various length scales. Reproduction of the same statistical variability of tow orientation as in these experiments is successfully achieved by combining the VariFab code with a simple genetic algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.