Abstract

We consider characterisations of unitary dilations and approximations of irreversible classical dynamical systems on a Hilbert space. In the commutative case, building on the work in [9], one can express well known approximants (e.g. Hille- and Yosida-approximants) via expectations over certain stochastic processes. Using this, our first result characterises the simultaneous regular unitary dilatability of commuting families of C0-semigroups via the dilatability of such approximants as well as via regular polynomial bounds. This extends the results in [13] to the unbounded setting. We secondly consider characterisations of unitary and regular unitary dilations via two distinct functional calculi. Applying these tools to a large class of classical dynamical systems, these two notions of dilation exactly characterise when a system admits unitary approximations under certain distinct notions of weak convergence. This establishes a sharp topological distinction between the two notions of unitary dilations. Our results are applicable to commutative systems as well as non-commutative systems satisfying the canonical commutation relations (CCR) in the Weyl form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.