Abstract

Pure layered phosphates of varying crystalline phases and crystallinity and composites of gradient layers of zirconium phosphate in Nafion 117-membranes have been prepared. The proton conductivity and, in case of the composites, also the dynamic mechanical properties of these materials were measured under different conditions of temperature and humidity. Membrane-electrode assemblies with low platinum catalyst loading of 0.4 mg cm −2 Pt at the cathode and 1.9 mg cm −2 Pt–Ru at the anode were examined in a direct methanol fuel cell (DMFC) at medium temperatures (130 °C). The conductivity of the layered zirconium phosphates is superior to the titanium phosphates and increases with decreasing crystallite size. The electrical performance of the composites in a DMFC-environment is slightly decreased as compared to the unmodified membrane but taking the reduced methanol crossover into account, higher efficiencies can be reached with the zirconium phosphate modified membrane. Furthermore, the mechanical properties are significantly improved by the presence of the inorganic compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.