Abstract

Yeast microbial fuel cells have received little attention to date. Yeast should be ideal MFC catalyst because they are robust, easily handled, mostly non-pathogenic organisms with high catabolic rates and in some cases a broad substrate spectrum. Here we show that the non-conventional yeast Arxula adeninvorans transfers electrons to an electrode through the secretion of a reduced molecule that is not detectable when washed cells are first resuspended but which accumulates rapidly in the extracellular environment. It is a single molecule that accumulates to a significant concentration. The occurrence of mediatorless electron transfer was first established in a conventional microbial fuel cell and that phenomenon was further investigated by a number of techniques. Cyclic voltammetry (CV) on a yeast pellet shows a single peak at 450 mV, a scan rate study showed that the peak was due to a solution species. CVs of the supernatant confirmed a solution species. It appears that, given its other attributes, A. adeninivorans is a good candidate for further investigation as a MFC catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.