Abstract
Abstract: Carbon fibre composites find wide applications in aerospace, sporting goods industry and biomedicine. Mechanical and thermal properties of such materials are highly anisotropic; therefore, adequate experimental measuring methods are requested to determine them. This paper describes the application of electronic speckle pattern interferometry to full‐field, real‐time characterisation of the coefficient of thermal expansion (CTE) of anisotropic materials. The topics such as correlation fringes tilt and influence of small rigid body rotation were theoretically described and experimentally verified. A series of measurements was carried out to determine the CTE tensor for unidirectional and bi‐directional carbon fibre laminates and to prove the feasibility of the method. The measuring set‐up developed includes a temperature control unit for cooling and heating and a one‐dimensional in‐plane speckle interferometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.