Abstract

BackgroundGraft choice in anterior cruciate ligament (ACL) reconstruction remains controversial and some grafts fail due to inadequate osteointegration. Demineralised cortical bone (DCB) is an osteoinductive collagen-based scaffold. The aim of this study was to measure the tensile properties of DCB from different locations and from different ages, and determine its compatibility with current ACL fixation systems. MethodsThe tensile properties of DCB manufactured from femur and tibia of young (9 month) and old (2–3 years) sheep was measured to determine the most appropriate graft choice. The ultimate load and stiffness of DCB allograft using two fixation systems, interference screws and sutures tied around screw posts, was measured ex vivo in an ovine ACL reconstruction model. Comparison was made with superficial digital flexor tendon (SDFT) and ovine ACL. ResultsDCB derived from young tibia had the highest ultimate load and stiffness of 67.7 ± 10.6 N and 130.2 ± 64.3 N/mm respectively. No DCB fixation system reached the published peak in vivo force through the ovine ACL of 150 N. SDFT fixation with interference screws (308.2 ± 87.3 N) did reach the in vivo threshold but was significantly weaker than ovine ACL (871.0 ± 64.2 N). ConclusionThe tensile properties of DCB were influenced by the donor age and bone. Owing to inferior tensile properties and incompatibility with suspensory fixation devices, this study indicates DCB is inferior to current tendon grafts options for ACL reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.