Abstract

A series of experiments were conducted in adult ewes to delineate the release profile of activin A and its relationship to other cytokines following an i.v. injection of the bacterial cell wall component, lipopolysaccharide (LPS). Following this challenge, plasma activin A increased rapidly and appeared to be released in a biphasic manner, slightly preceding the release of tumour necrosis factor-alpha (TNFalpha) and before elevation of interleukin (IL)-6 and follistatin levels. The concentration of activin A was correlated with body temperature during the response to LPS. A second experiment compared cytokine concentrations in matched blood and cerebrospinal fluid (CSF) samples. This revealed that activin A was not released centrally in the CSF following a peripheral LPS injection, nor was TNFalpha or the activin binding protein, follistatin, but IL-6 showed a robust elevation. In a third experiment, the stimulus for activin A release was examined by blocking prostaglandin synthesis. Flurbiprofen, a prostaglandin synthesis inhibitor, effectively attenuated the fever response to LPS and partly inhibited cortisol release, but the cytokine profiles were unaffected. Finally, the bioactivity of TNFalpha and/or IL-1 was blocked using soluble receptor antagonists. These treatments did not affect the initial release of activin A, but blockade of TNFalpha depressed the second activin peak. These studies define more rigorously the release of activin A into the circulation following acute inflammatory challenge. The response is rapid and probably biphasic, independent of prostaglandin- mediated pathways and does not depend upon stimulation by TNFalpha or IL-1. The data suggest that activin A release is an early event in the inflammatory cascade following the interaction of LPS with its cellular receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.