Abstract

We have recently characterised a 60-kDa muscle-specific phosphoglucomutase-related protein (PGM-RP) which is expressed predominantly in adult visceral and vascular smooth muscle. Here we show that the adult vascular smooth muscle cell line PAC1, which retains the capacity to synthesise metavinculin (a marker of the contractile phenotype) also expressed PGM-RP. However, an embryonic smooth muscle cell line A10, which lacks metavinculin, expressed low levels of PGM-RP. Levels of PGM-RP increased in quiescent PAC1 and A10 cells, and were elevated in response to angiotensin II. PGM-RP is therefore a good marker of the contractile/differentiated smooth muscle phenotype. We have sequenced 1.8 kb of the human PGM-RP promoter and shown that it lacks a conventional TATA box. There are multiple transcription start sites, the most predominant of which are inside an initiator sequence (Inr), which is close to two CT boxes and a GATA element. A minimal promoter-CAT construct (p57-CAT) containing the Inr, a CT box and GATA element directed high-level chloramphenicol acetyltransferase (CAT) expression in the differentiated smooth muscle cell line PAC1, and low-level expression in the embryonic smooth muscle cell line A10. This fits well with the pattern of expression of the endogenous gene. A construct (p146-CAT) containing all of the mRNA initiation sites directed a reduced level of CAT expression, and constructs containing 1.8 kb and 3.3 kb upstream of the major transcription start site displayed even lower activity. Sequence comparisons suggest that the PGM-RP promoter evolved from the main phosphoglucomutase promoter which is active in wide range of cell types. The PGM-RP promoter may have acquired negative regulatory elements as expression of the gene became muscle-specific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.