Abstract

Molybdenum-dependent repression of transcription of the Escherichia coli modABCD operon, which encodes the high-affinity molybdate transporter, is mediated by the ModE protein. This regulatory protein was purified as an N-terminal His6-tagged derivative and characterised both with and without the N-terminal oligohistidine extension. Equilibrium centrifugation showed that ModE is at least a 57-kDa homodimer. Circular dichroism spectroscopy indicated that when molybdate or tungstate bind to ModE there is little change in its alpha-helical content, but a major change in the environment of tryptophan and tyrosine residues occurs. Addition of molybdate or tungstate to the protein results in almost 50% quenching of the fluorescence attributed to tryptophan. Titration of fluorescence quenching showed that two molecules of molybdenum bind to each dimer of ModE with a Kd of 0.8 microM. DNA mobility-shift assays showed that ModE requires molybdenum, or tungstate, to bind with high affinity (approximate Kd of 30 nM ModE) to the modABCD promoter region. In accord with ModE's role as a molybdenum-dependent transcriptional repressor, DNase I footprinting experiments showed that the ModE-molybdenum complex binds to a single 31-bp region around the transcription start of the modABCD promoter. This region contains a 6-base palindromic sequence CGTTAT-N12-ATAACG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.