Abstract

3-Hydroxykynurenine (3-OHKyn) is a tryptophan metabolite that is readily autoxidised to products that may be involved in protein modification and cytotoxicity. The oxidation of 3-OHKyn has been studied here with a view to characterising the major products as well as determining their relative rates of formation and the role that H2O2 and hydroxyl radical (HO·) may play in modifying the autoxidation process. Oxidation of 3-OHKyn generated several compounds. Xanthommatin (Xan), formed by the oxidative dimerisation of 3-OHKyn, was the major product formed initially. It was, however, found to be unstable, particularly in the presence of H2O2, and degraded to other products including the p-quinone, 4,6-dihydroxyquinolinequinonecarboxylic acid (DHQCA). A compound that has a structure consistent with that of hydroxy-xanthommatin (OHXan) was also formed in addition to at least two minor species that we were unable to identify. Hydrogen peroxide was formed rapidly upon oxidation of 3-OHKyn, and significantly influenced the relative abundance of the different autoxidation species. Increasing either pH (from pH 6 to 8) or temperature (from 25°C to 35°C) accelerated the rate of autoxidation but had little impact on the relative abundance of the autoxidation species. Using electron paramagnetic resonance (EPR) spectroscopy, a clear phenoxyl radical signal was observed during 3-OHKyn autoxidation and this was attributed to xanthommatin radical (Xan·). Hydroxyl radicals were also produced during 3-OHKyn autoxidation. The HO· EPR signal disappeared and the Xan· EPR signal increased when catalase was added to the autoxidation mixture. The HO· did not appear to play a role in the formation of the autoxidation products as evidenced using HO· traps/scavengers. We propose that the cytotoxicity of 3-OHKyn may be explained by both the generation of H2O2 and by the formation of reactive 3-OHKyn autoxidation products such as the Xan· and DHQCA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.