Abstract

The push-in test is the only micromechanical test method that is not restricted to artificial fibre/matrix arrangements, but allows the in situ characterisation of interfaces in composites fabricated and stressed under realistic conditions. However, with the application of this method to reinforced polymers some problems arise both in the mathematical model for evaluating test data and in the practical performance of the test. Because in some cases the deformation of the relatively compliant polymeric matrices cannot be neglected, an extension of the existing model is required. For this purpose, the elastic energy of the material around the debonded part of the fibre is estimated and included in the energy-balance analysis. Because of the small diameter of the fibres usually used for reinforcing polymers, a test apparatus was designed which ensures a high positioning accuracy in the xy plane as well as in the z direction. In order to minimise thermal and mechanical influences, the microscope for fibre selection and the force sensor/indenter are directly connected together and the apparatus is designed to be stiff in all components. A solid-state bending joint guarantees very precise control of the axial movement. Three examples of the application of this easy-to-handle and low-cost test apparatus are presented briefly in the paper: assess fibre/matrix combinations, measures to improve the interfacial adhesion and the influence of water on the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.