Abstract

In recent experiments at the ASDEX Upgrade tokamak the existence of an Edge Resonant Transport Layer (ERTL) was revealed as the main transport mechanism responsible for the measured fast-ion losses in the presence of externally applied 3D fields. The Monte Carlo orbit-following code ASCOT was used to study the fast-ion transport including the plasma response calculated with MARS-F, reproducing a strong correlation of fast-ion losses with the poloidal mode spectra of the 3D fields. In this work, a description of the physics underlying the ERTL is presented by means of numerical simulations together with an analytical model and experimental measurements to validate the results. The degradation of fast-ion confinement is calculated in terms of the variation of the toroidal canonical momentum (δPϕ). This analysis reveals resonant patterns at the plasma edge activated by 3D perturbations and emphasizes the relevance of nonlinear resonances. The impact of collisions and the radial electric field on the ERTL is analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.