Abstract

AbstractThe damaging micromechanisms in a pearlitic (EN‐GJS700‐2) ductile cast iron (DCI) are investigated by means of scanning electron microscope (SEM) analysis and acoustic emission (AE) testing. Monotonic uniaxial tensile tests are performed on microtensile specimens under strain control. SEM analysis is applied under in situ conditions by means of a tensile holder. The multiple damaging micromechanisms are identified, and their evolution along with the mechanical response is characterised. The traditional AE features are found to be qualitatively correlated to the onset of the fracture damage over the elastic behaviour. The information entropy of the AEs evaluated according to both Shannon and Kullback‐Leibler formulations is proven to be well correlated to the ongoing damage and the incipient failure. Tentative failure criteria are finally proposed. The assessment approach is found to be promising for structural health monitoring purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call