Abstract

Currently, the construction sector contributes considerably to the total energy consumption and greenhouse gas emissions into the atmosphere. Thermal energy storage (TES) systems are alternatives to increase the thermal inertia of buildings, aiming to use less energy, improve thermal comfort and reduce temperature fluctuations of interior spaces. One of the possible applications in buildings is to increase their thermal mass by impregnating phase change materials (PCM) in porous construction materials, e.g., gypsum boards. In this investigation, a commercial gypsum board impregnated with PCM (Knauf Comfortboard – BASF) was investigated by carrying out a structural and thermal characterisation. The thermal response obtained agrees with the product's technical data sheet provided by the supplier. The results of the thermal characterisation show that the inclusion of PCM in the gypsum board decreased the U-value by 2 % compared to the control sample (no PCM), increased the heat storage capacity by around 45 %, improved the thermal dynamic characteristics of the material by decreasing the thermal stability coefficient from 0.92 to 0.76 and increasing the thermal lag from 0.27 to 0.49 h. Our results sustain the potential application of commercial gypsum boards with PCM under environmental conditions across a wide range of daily temperature fluctuations (e.g., The North of Chile).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.