Abstract

This paper reports experimental characterisation of a dielectric elastomer which is used as a base material for electro-active polymer actuators and sensors. Specific deformation energy has been experimentally determined to characterise a dielectric acrylic elastomer for large elastic deformation. Specific deformation energy value was estimated from the experimental stress–strain data in the range between zero and chosen strain using trapezoidal method. The coefficients of variation of specific deformation energy measured at different strain values are reasonably low. Results show that specific deformation energy can be better indicator to the differences in large deformations of such material compared to elastic modulus or the slope at the given strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.