Abstract

The lifespan of surfacing course materials like mastic asphalt on orthotropic steel deck bridges is quite short when compared with that of ordinary road pavements. Several problems including cracking and rutting of the surfacing materials have been reported in many countries. This is the second part of the two papers on characterisation of the behaviour of typical surface course materials for orthotropic steel deck bridges. In this paper, details of the constitutive model and its numerical implementation are presented. An important component of the model is an unconditionally stable, implicit Euler backward algorithm for the integration of the constitutive equations. Comparisons of model predictions and laboratory measurements at different temperatures, deformation rates and confining stresses are shown. Utilisation of the model in finite element analyses has enabled the investigation of the inelastic response of a 3D orthotropic steel deck bridge subjected to dual wheel loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.