Abstract

Ionic and neutral polysaccharides with well-defined structures were chosen to investigate the mechanism of water sorption at different relative humidities. From an experimental point of view, the freezing water was determined by DSC when the total sorbed water was obtained from thermogravimetry. The isotherms of sorption and enthalpies of interaction were determined using the combination of a microbalance and a microcalorimeter. It is shown that freezing water appears for P/ P 0 > 0.85 especially with the neutral polymers. The differential molar enthalpy of interaction is higher for P/ P 0 < 0.85 corresponding to the fixation of two water molecules forming double H-bonds; this result is confirmed by molecular modelling; saturation is obtained experimentally for 4 water molecules interacting per glucose unit. On ionic polymers, the water retention increases especially over P/P 0 ∼ 0.8 and the enthalpy of interaction is higher for the first water molecules sorbed. For P/ P 0 ≅ 0.8, the numbers of bound water molecules found are 2 per glucopyranosyl unit for neutral polysaccharides, 5 for glucuronan and 9–10 for carboxymethylcellulose (CMC) of D S = 2 and hyaluronan (HA)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.