Abstract

The effects of ethanol (up to 20 wt%) on the rheological properties and structural characteristics of κ-carrageenan gel were investigated by Field Emission Scanning Electron Microscopy (FESEM) and Small Angle X-ray Scattering (SAXS). Both the sol-gel and gel-sol transition temperatures shifted to higher degree (from 36.8 ± 0.5 to 52.5 ± 1.4 °C and from 51.2 ± 0.6 to 67.0 ± 0.5 °C, respectively) upon 20 wt% ethanol addition (P < 0.05). The critical relaxation exponent n and the critical gel strength Sg obtained from Winter-Chambon criterion decreased and increased, respectively as the ethanol concentration increased. The κ-carrageenan gel was formed due to the formation of fibrillar networks, and the fibrillar density increased upon ethanol addition via FESEM. Moreover, upon 20 wt% ethanol addition, the average radius of gyration of κ-carrageenan strand increased from 1.18 ± 0.03 of control to 1.55 ± 0.02 nm by SAXS. A mechanism underlying the effect of ethanol on the κ-carrageenan gelation was proposed based on coil to double helix transition followed by the helix aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.