Abstract
The retention (migration) behaviour of various barbiturates, phenylurea and triazine herbicides in micellar electrokinetic chromatography (MEKC) with uncoated fused-silica capillaries was compared with the behaviour in micellar electrokinetic chromatography with reduced electroosmotic flow (RF-MEKC) using capillaries modified with linear polyacrylamide. The error in the values of the retention factors caused by the neglection of the contribution of the electroosmotic flow in RF-MEKC was investigated and a method for correcting this error was suggested. The retention was characterised using the lipophilic and polar indices to characterise and to predict the retention as a function of the concentration of the surfactant (sodium dodecylsulphate) in the running buffer in MEKC and in RF-MEKC. Homologous series of n-alkylbenzenes and of n-alkan-2-ones were compared as the standard sets for the calibration of the retention (migration) index scale. The values of the lipophilic indices of a given solute measured in reversed-phase HPLC, MEKC and RF-MEKC are close to each other. Under ideal MEKC conditions, the values of the polarity indices are close to one for various sample solutes. However, for partially ionised compounds such as weakly acidic barbiturates, where the contribution of the electrophoretic migration is significant, the values of the polarity indices are significantly lower than one. Optimum conditions for separations of mixtures of triazine and phenylurea herbicides and of barbiturates using various techniques tested were compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.