Abstract

The non-invasive ability of infrared thermal imaging has gained interest in various food classification and recognition tasks. In this work, infrared thermal imaging was used to distinguish different pineapple cultivars, i.e., MD2, Morris, and Josapine, which were subjected to different storage temperatures, i.e., 5, 10, and 25 °C and a relative humidity of 85% to 90%. A total of 14 features from the thermal images were obtained to determine the variation in terms of image parameters among the different pineapple cultivars. Principal component analysis was applied for feature reduction in order to prevent any effect of significant difference between the selected features. Several types of machine learning algorithms were compared, including linear discriminant analysis, quadratic discriminant analysis, support vector machine, k-nearest neighbour, decision tree, and naïve Bayes, to obtain the best performance for the classification of pineapple cultivars. The results showed that support vector machine achieved the best performance from the combination of optimal image parameters with the highest classification rate of 100%. The ability of infrared thermal imaging coupled with machine learning approaches can be potentially used to distinguish pineapple cultivars, which could enhance the grading and sorting processes of the fruit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.