Abstract

RationaleTandem mass spectrometry of phosphorylated ions can often yield a limited number of product ions owing to the labile nature of phosphate groups. Developing techniques to improve dissociation for this type of ion has implications for the structural characterisation of many different phosphorylated ions, such as those from nucleotides, pharmaceutical compounds, peptides and polymers.MethodsSolutions of adenosine monophosphate, diphosphate and triphosphate (AMP, ADP and ATP) were studied in a hybrid linear ion trap–Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Precursor ions with an overall single positive charge, including protonated nucleotides or nucleotide cations containing one, two or three sodium atoms, were isolated for tandem mass spectrometry. Collision‐induced dissociation (CID) was performed in the linear ion trap, with electron‐induced dissociation (EID) being conducted in the FTICR cell.ResultsEID resulted in many product ions not seen in CID. EID product ion spectra were seen to vary for AMP, ADP and ATP when the nucleotide cation contained zero, one, two or three sodiums. Precursor cations that contain two or three sodiums mainly formed product ions derived from the phosphate group. Conversely, when a precursor ion containing no sodium underwent EID, product ions mainly relating to the non‐phosphate end of the ion were observed. The number of phosphate groups was not seen to greatly affect either CID or EID product ion spectra.ConclusionsThe presence of sodium in a precursor ion directs electron‐induced bond dissociation, thus enabling targeted, and therefore tuneable, fragmentation of groups within that precursor ion. For all precursor ions, the most useful product ion spectra were obtained by EID for a precursor ion containing one sodium, with bond dissociation occurring across the entire nucleotide cation. The findings of this study can be used to improve the structural elucidation of many phosphorylated molecules by broadening the range of product ions achievable. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

Highlights

  • The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:

  • electron-induced dissociation (EID) gave significantly more diagnostic information for all the AMP, ADP and adenosine triphosphate (ATP) precursor ions than collisioninduced dissociation (CID), where cleavage was mainly limited to the phosphate group

  • The number of sodium cations included in the precursor ion had limited effect on the CID product ion spectra

Read more

Summary

Durham Research Online

Citation for published item: Ball, Andrew T. and Prakash, Aruna S. and Bristow, Anthony W. Publisher's copyright statement: c 2016 The Authors. A full bibliographic reference is made to the original source a link is made to the metadata record in DRO the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk

Published online in Wiley Online Library
Sample preparation
Mass spectrometry
RESULTS AND DISCUSSION
AMP ADP
CONCLUSIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.