Abstract

Steam oxidation of heat exchanger tubes and pipe work is of growing interest as research into the improvement of power plant efficiencies shows the need for much higher steam temperatures and pressures. This paper reports on the characterisation of the oxide scales grown during the steam oxidation of four alloys (T23, T92, TP347HFG and Inconel 740) in atmospheric pressure steam at four temperatures (600, 650, 700 and 750°C) for periods of 250, 500 and 1000 h. Three methods have been employed in analysing these scales: reflected light optical microscopy, scanning electron microscopy with energy dispersive X-ray analysis and X-ray diffraction.The thickness, composition, morphology and spalling behaviour of the oxides differed with alloy composition, exposure times/temperatures and sample shapes. The ferritic steels exhibited the most severe oxidation, with the scales formed on these typically being triple-layered: an inner layer of Fe – Cr spinel, central layer of magnetite and outermost layer of haematite. However, the amount of haematite formed changed with the exposure time/temperature, alloy and sample orientation. In comparison TP347HFG and Inconel 740 showed significantly slower oxidation, with generally thin oxide scales (<5 µm) developing even at the highest exposure temperatures, though TP347HFG started to form some nodular growths after 1000 h exposure at the two higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.