Abstract
The paper presents a study regarding the structure, morphology and magnetic behaviour of x% (Ni0.65Zn0.35Fe2O4)/(100 − x)% SiO2 ferrimagnetic nanocomposites for low Ni–Zn ferrite concentration (x = 5, 10, 15, 20 and 30 mass percent) obtained by an improved modified sol–gel method. The obtained gels and nanocomposites have been characterized by fast Fourier transform-infrared (FT-IR) spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and magnetic measurements (MM). The addition of a supplementary quantity of diol in the synthesis, corresponding to a molar ratio EG : TEOS = 1:1, and the control of the thermal treatment applied to the precursor xerogels tetraethylortosilicate (TEOS)–metal nitrates (MN)–ethylene glycol (EG) leads to fine (~2–9 nm), almost spherical Ni–Zn ferrite nanoparticles homogenously dispersed inside the amorphous SiO2 matrix. TEM images reveal the fine nature and the narrow size distribution of the ferrite nanoparticles. Nanoparticles diameter increases with the ferrite concentration and with the annealing temperature. For all concentrations of ferrite in SiO2 and all annealing temperature, we have obtained Ni0.65Zn0.35Fe2O4 ferrite as single phase (proven by XRD) in the amorphous silica matrix, only after a pre-treatment of synthesized gels, at 573 K, for 3 h. The magnetic behaviour of ferrite nanoparticles in quasi-static magnetic fields is very particular, depending on the annealing temperature and the ferrite content in silica matrix. We have obtained superparamagnetic behaviour for the nanocomposites, for a concentration of 30% ferrite in SiO2 at high annealing temperature, of 1,273 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.