Abstract

BackgroundAn infectious aetiology for prostate cancer has been conjectured for decades but the evidence gained from questionnaire-based and sero-epidemiological studies is weak and inconsistent, and a causal association with any infectious agent is not established. We describe and evaluate the application of new technology to detect bacterial and viral agents in high-grade prostate cancer tissues. The potential of targeted 16S rRNA gene sequencing and total RNA sequencing was evaluated in terms of its utility to characterise microbial communities within high-grade prostate tumours.MethodsTwo different Massively Parallel Sequencing (MPS) approaches were applied. First, to capture and enrich for possible bacterial species, targeted-MPS of the V2-V3 hypervariable regions of the 16S rRNA gene was performed on DNA extracted from 20 snap-frozen prostate tissue cores from ten “aggressive” prostate cancer cases. Second, total RNA extracted from the same prostate tissue samples was also sequenced to capture the sequence profile of both bacterial and viral transcripts present.ResultsOverall, 16S rRNA sequencing identified Enterobacteriaceae species common to all samples and P. acnes in 95% of analyzed samples. Total RNA sequencing detected endogenous retroviruses providing proof of concept but there was no evidence of bacterial or viral transcripts suggesting active infection, although it does not rule out a previous ‘hit and run’ scenario.ConclusionsAs these new investigative methods and protocols become more refined, MPS approaches may be found to have significant utility in identifying potential pathogens involved in disease aetiology. Further studies, specifically designed to detect associations between the disease phenotype and aetiological agents, are required.

Highlights

  • An infectious aetiology for prostate cancer has been conjectured for decades but the evidence gained from questionnaire-based and sero-epidemiological studies is weak and inconsistent, and a causal association with any infectious agent is not established

  • 16S Ribosomal RNA (rRNA) V4 hypervariable region One thousand three hundred and twenty four unique Operational Taxonomic Unit (OTU) were identified in all 20 prostate tissue samples combined

  • There were five other unique OTUs that represented ≥ 1% of the microbial community observed across all samples

Read more

Summary

Introduction

An infectious aetiology for prostate cancer has been conjectured for decades but the evidence gained from questionnaire-based and sero-epidemiological studies is weak and inconsistent, and a causal association with any infectious agent is not established. First proposed in the early 1950s, an infectious aetiology for prostate cancer has since been widely investigated using conventional and serology-based case–control designs and some cohort studies but the evidence from these has been generally weak and inconsistent. Studies that have investigated the role of infectious agents in the aetiology of prostate cancer have adopted single organism targeted approaches or have identified microbial constituents based on amplification of various hypervariable regions of the 16S rRNA gene in concert with traditional cloning and sequencing methods [6,7,8,9]. When compared with conventional sequencing methods, cyclic arraybased massively parallel sequencing (MPS) methods, albeit with shorter read length capability and less

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call