Abstract

Laser-based spectroscopic techniques offer potential for characterising the alteration products of spent nuclear fuel in settings where the use of more traditional analytical methods is impracticable. Among these alteration products, uranyl phosphate phases have long attracted interest owing to their potential to form passivating surfaces on primary uranium phases inhibiting further uranium dissolution. Two strontium-rich meta-autunite ((Ca,Sr)(UO2)2(PO4)2·2–8(H2O)) samples from the Mount Spokane uranium deposit, Washington, USA were characterised by multiple laser wavelength Raman and time-resolved laser fluorescence spectroscopy. Well-defined Raman features were obtained, particularly at a laser wavelength of 785 nm, but partially hydrated meta-autunite phases could not be differentiated by Raman alone. However, subtle differences in three key modes were observed between meta-autunite and published data for fully hydrated autunite specimens enabling these minerals to be distinguished. Seven luminescence emission and several excitation features were resolved for the two samples, with the latter being the first reported excitation data for meta-autunite. The luminescence decay lifetime was found to be significantly longer than previously reported and sensitive to the meta-autunite dehydration phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call