Abstract

Juvenile wood properties are studied in a ring-porous tropical hardwood – teak (Tectona grandis L. F), to assess the utilisation potential of short rotation timber. Compared to mature wood, it is characterised by wide rings, short fibres, small diameter, low vessel percentage, high cell wall, wide microfibrillar angle and relatively low or almost similar mechanical properties. While the average modulus of elasticity and modulus of rupture in juvenile wood are 85% and 82% respectively of the mature wood value, the longitudinal compression strength is similar. With relatively small fibrillar angle of 15° and the scope for genetic selection of individual trees, teak juvenile wood has potential for desired dimensional stability. The segmented regression models and visual interpretation of radial patterns of variation in anatomical properties reveal that juvenility in plantation grown teak extends up to 15, 20–25 years depending on the property, growth rate and individual tree and plantation site. The fitted regression models, to explain the age-related variations in juvenile wood properties range from simple, linear to exponential, reciprocal and quadratic equations. Fibre length, microfibrillar angle, vessel diameter/percentage and ring width appear to be the best anatomical indicators of age demarcation between juvenile and mature wood, although maturation age often varies among the properties. The projected figures for proportion of juvenile wood in plantation grown teak at breast height are 80–100% and 25% at ages 20 and 60 years respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.