Abstract

ABSTRACT This study aims a systematic experimental investigation using acoustic emission (AE) non-destructive technique for online monitoring of hydrogen assisted cracking (HAC) in modified 9Cr-1Mo steel (P91 steel) welds during Gap-Bead on Plate (G-BOP) and implant tests. Welds made without preheating, with different preheating and combined pre and post heating were tested using G-BOP test. AE results of G-BOP tests have shown that time duration in which HAC active varies with temperature of preheating and combined pre and post heating. Reduction of AE activity in welds made with pre and post heating compared to those only made with preheating revealed a beneficial effect of the former in reducing HAC. In the case of implant tests, crack initiation and propagation are identified for different applied loads from the AE analysis. An attempt has been made to compare HAC during G-BOP tests and implant tests using AE frequency analysis. The dominant frequency of AE signals characteristic of HAC has been identified. This study shows the potential of using AE frequency analysis for online monitoring of hydrogen assisted cracking (HAC) in welds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call