Abstract

Oestrogen receptor (ER)α and ERβ are members of the ligand-activated superfamily of nuclear receptors and mediate most facets of oestrogen signalling. Several naturally occurring splice variants of each ER have been identified in the human brain, yet the biological significance of these splice variants in the brain remains unknown. In the present study, we exploit the unique structural differences of the human ERβ splice variants to determine the functional significance of individual ER domains in the brain. We previously established that full-length rodent ERβ (i.e. rERβ1) has constitutive transcriptional activity in neuronal cells in the absence of ligand. By contrast to the rodent splice variants, the human ERβ splice variants used in the present study contain varying length truncations of exon 8, which encodes for the E/F domains. Our results reveal that, in neuronal cells, each human-specific ERβ splice variant constitutively activated promoters mediated by a canonical oestrogen response element and repressed promoters mediated by activator protein-1 sites via p38 activity. From these data, we conclude that the C-terminus, encoding the AF-2 region and F domain, is not essential for the constitutive properties of human ERβ. Taken together, these studies show that human-specific ERβ variants are constitutively active and also provide novel insight into the contributions of the functional domains of ERβ towards mediating constitutive transcription at various promoters in neuronal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.