Abstract
With the increasing penetration levels of intermittent and fluctuating energy sources such as wind generating systems in the electricity grid, resulting voltage fluctuations and flicker can be expected to become an important power quality considerations. Due to significant bidirectional power flows resulting from large renewable power generation systems connected to downstream, voltage fluctuations may propagate from downstream to upstream. The work presented in this paper investigates and characterises flicker emission and propagation resulting from fluctuating generating sources connected to a distribution network. Mathematical models are developed for flicker emission under different generator control strategies and flicker propagation to upstream network. These emission and propagation characteristics are investigated and verified using a test network comprised of a wind farm. The study has revealed that flicker emission characteristics are influenced in a detrimental manner by the reactive power control strategy of the generator and the flicker attenuation characteristics are influenced by the various load types connected to the distribution feeder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.