Abstract

Ptychography is a lensless imaging technique that is aberration-free and capable of imaging both the amplitude and the phase of radiation reflected or transmitted from an object using iterative algorithms. Working with extreme ultraviolet (EUV) light, ptychography can provide better resolution than conventional optical microscopy and deeper penetration than scanning electron microscope. As a compact lab-scale EUV light sources, high harmonic generation meets the high coherence requirement of ptychography and gives more flexibilities in both budget and experimental time compared to synchrotrons. The ability to measure phase makes reflection-mode ptychography a good choice for characterising both the surface topography and the internal structural changes in EUV multilayer mirrors. This paper describes the use of reflection-mode ptychography with a lab-scale high harmonic generation based EUV light source to perform quantitative measurement of the amplitude and phase reflection from EUV multilayer mirrors with engineered substrate defects. Using EUV light at 29.6nm from a tabletop high harmonic generation light source, a lateral resolution down to ∼88nm and a phase resolution of 0.08rad (equivalent to topographic height variation of 0.27nm) are achieved. The effect of surface distortion and roughness on EUV reflectivity is compared to topographic properties of the mirror defects measured using both atomic force microscopy and scanning transmission electron microscopy. Modelling of reflection properties from multilayer mirrors is used to predict the potential of a combination of on-resonance, actinic ptychographic imaging at 13.5nm and atomic force microscopy for characterising the changes in multilayered structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.