Abstract

Disproportionating enzyme or D-enzyme (EC 2.4.1.25) is an alpha-1,4 glucanotransferase which catalyses cleavage and transfer reactions involving alpha-1,4 linked glucans altering (disproportionating) the chain length distribution of pools of oligosaccharides. While D-enzyme has been well characterised in some plants, e.g. potato and Arabidopsis, very little is known about its abundance and function in cereals which constitute the major source of starch worldwide. To address this we have investigated D-enzyme in wheat (Triticum aestivum). Two putative D-enzyme cDNA clones have been isolated from tissue-specific cDNA libraries. TaDPE1-e, from an endosperm cDNA library, encodes a putative polypeptide of 575 amino acid residues including a predicted transit peptide of 41 amino acids. The second cDNA clone, TaDPE1-l, from an Aegilops taushii leaf cDNA library, encodes a putative polypeptide of 579 amino acids including a predicted transit peptide of 45 amino acids. The mature polypeptides TaDPE1-e and TaDPE1-l were calculated to be 59 and 60 kDa, respectively, and had 96% identity. The putative polypeptides had significant identity with deduced D-enzyme sequences from corn and rice, and all the expected conserved residues were present. Protein analysis revealed that D-enzyme is present in the amyloplast of developing endosperm and in the germinating seeds. D-enzyme was partially purified from wheat endosperm and shown to exhibit disproportionating activity in vitro by cleaving maltotriose to produce glucose as well as being able to use maltoheptaose as the donor for the addition of glucans to the outer chains of glycogen and amylopectin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.