Abstract

BackgroundGlutathione S-transferases (GSTs) facilitate detoxification of drugs by catalysing the conjugation of the reduced glutathione (GSH) to electrophilic xenobiotic substrates and therefore have a function in multi-drug resistance. As a result, knowledge of GSTs can inform both drug resistance in, and novel interventions for, the control of endo- and ectoparasite species. Acaricide resistance and the need for novel control methods are both pressing needs for Dermanyssus gallinae, a highly economically important haematophagous ectoparasite of poultry.MethodsA transcriptomic database representing D. gallinae was examined and 11 contig sequences were identified with GST BlastX identities. The transcripts represented by 3 contigs, designated Deg-GST-1, −2 and −3, were fully sequenced and further characterized by phylogenetic analysis. Recombinant versions of Deg-GST-1, −2 and −3 (rDeg-GST) were enzymically active and acaricide-binding properties of the rDeg-GSTs were established by evaluating the ability of selected acaricides to inhibit the enzymatic activity of rDeg-GSTs.Results6 of the identified GSTs belonged to the mu class, followed by 3 kappa, 1 omega and 1 delta class molecules. Deg-GST-1 and −3 clearly partitioned with orthologous mu class GSTs and Deg-GST-2 partitioned with delta class GSTs. Phoxim, permethrin and abamectin significantly inhibited rDeg-GST-1 activity by 56, 35 and 17 % respectively. Phoxim also inhibited rDeg-2-GST (14.8 %) and rDeg-GST-3 (20.6 %) activities.ConclusionsDeg-GSTs may have important roles in the detoxification of pesticides and, with the increased occurrence of acaricide resistance in this species worldwide, Deg-GSTs are attractive targets for novel interventions.

Highlights

  • Glutathione S-transferases (GSTs) facilitate detoxification of drugs by catalysing the conjugation of the reduced glutathione (GSH) to electrophilic xenobiotic substrates and have a function in multi-drug resistance

  • We have previously produced a D. gallinae transcriptomic database [39] and, in the present study, we identify the repertoire of GSTs in D. gallinae by data-mining the database with GST search terms and investigate the interactions of 3 selected Deg-GSTs with acaricides commonly used in the poultry sector to characterise the potential for involvement of the Deg-GSTs in acaricide detoxification

  • We have shown that mu and delta class GSTs are present in D. gallinae and interact with phoxim, permethrin and abamectin acaricide compounds and they may have important roles in the detoxification of several classes of pesticides

Read more

Summary

Introduction

Glutathione S-transferases (GSTs) facilitate detoxification of drugs by catalysing the conjugation of the reduced glutathione (GSH) to electrophilic xenobiotic substrates and have a function in multi-drug resistance. Knowledge of GSTs can inform both drug resistance in, and novel interventions for, the control of endo- and ectoparasite species. Acaricide resistance and the need for novel control methods are both pressing needs for Dermanyssus gallinae, a highly economically important haematophagous ectoparasite of poultry. The haematophagous poultry red mite [Dermanyssus gallinae (De Geer, 1778)] is the most economically important parasite affecting commercial egg production facilities worldwide, causing an estimated annual production loss of €130 million in Europe alone [1, 2]. The impact on bird health and behaviour can be severe and manifests as agitation and pecking, weight loss and anaemia; with production losses attributed to increase bird mortality, a decrease in egg quality and output, higher feed-conversion rate and mite control costs [2, 4, 5]. In addition to active site mutation, the development of acaricide resistance in other pest species may be attributed to the activities of detoxifying enzymes including

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call