Abstract

The paper analyses previously reported work, which uses digital image correlation to measure fatigue crack closure. As well as determining crack opening loads, the information on crack shape may be used to estimate the stress intensity factor, as well as other parameters in more complex models of crack tip fields. A number of specimens were subjected to single overload cycles, which produced a significant retardation in crack growth rate. The method previously applied to the analysis of constant amplitude loading is here used to analyse the single overload case. The stress intensity factor history is found to be very different in the two cases and the consequences of this observation for analysis of fatigue crack propagation are discussed.

Highlights

  • The study of crack tip stress, strain, and displacement fields has a long history

  • A number of specimens were subjected to single overload cycles, which produced a significant retardation in crack growth rate

  • The displacement fields were converted into the two parameter description (K, ) and provided an interesting contrast to the results obtained from constant amplitude loading

Read more

Summary

Introduction

The study of crack tip stress, strain, and displacement fields has a long history. One hundred years ago, Inglis recognized that a sharp elastic crack would exhibit a stress (and strain) singularity [1]. The paper analyses previously reported work, which uses digital image correlation to measure fatigue crack closure. As well as determining crack opening loads, the information on crack shape may be used to estimate the stress intensity factor, as well as other parameters in more complex models of crack tip fields.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.