Abstract

New results about the scratch practical adhesion-resistance of the CoB–Co2B/substrate system developed at the surface of CoCrMo (ASTM-F75) alloy were estimated. The boron diffusion on the surface of the cobalt alloy was conducted using the powder-pack boriding process at temperatures of 1223 and 1273 K with different exposure times for each temperature. The scratch tests over the surface of cobalt borided alloy were performed with a 200 micrometres Rockwell C diamond indenter considering a continuously increasing normal force for the entire set of experimental conditions of the boriding process. The worn tracks produced on the coating/substrate system were analysed by optical and scanning electron microscopy to estimate and identify the critical loads and failure mechanisms, respectively. The results indicated that the critical loads varied between 95 and 142 N as a function of the boride coating thicknesses with a development of various types of failure mechanisms over the surface of the coating/substrate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.