Abstract

Dielectric materials used for spacecraft applications are often characterised under electron irradiation in order to study their physical and electrical mechanisms. For surface potential measurement, a small removable flat device based on the secondary electron spectrometer method has been developed and installed in the CEDRE irradiation test facility at ONERA (Toulouse, France). This technique was developed to get rid off specific issues inherent to the Kelvin Probe technique. This experimental device named REPA (Repulsive Electron Potential Analyser) allows in situ and real time assessment of the surface potential built up on dielectric materials under continuous electron irradiation. A calibration has been performed in order to validate this experimental setup. Furthermore, to optimise its efficiency, the physical behaviour of this device has been modelled and numerically simulated using Particle In Cell (PIC) model and a dedicated numerical code called SPIS (Spacecraft Plasma Interactions System). In a final step, electrical characterisations of a charged dielectric have been carried out under continuous electron irradiation with this new method. These results have been compared with measurements performed in same experimental conditions with conventional Kelvin Probe method. The experimental results have been discussed in this paper. To conclude, advantages of this experimental setup in regard of this application will be emphasised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call