Abstract

Two methods were proposed and implemented for the fabrication of channel waveguides in an Er-doped Tellurite glass. In the first method, channel waveguides were fabricated by implanting 1.5 MeV and 3.5 MeV energy N+ ions through a special silicon mask to the glass sample at various fluences. Those waveguides implanted at a fluence of 1.0 × 1016 ions/cm2 operated up to 980 nm, and showed green upconversion of the Erbium ions. In the second method, channel waveguides were directly written in the Er3+: TeO2W2O3 glass using an 11 MeV C4+ ion microbeam with fluences in the range of 1 · 1014–5 · 1016 ions/cm2. The waveguides worked in single mode regime up to the 1540 nm telecom wavelength. Propagation losses were reduced from the 14 dB/cm of the as-irradiated waveguides by stepwise thermal annealing to 1.5 dB/cm at λ = 1400 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call