Abstract
Constantly rising demands on extremely stressed lightweight structures, particularly in traffic engineering as well as in machine building and plant engineering, increasingly require the use of continuous fibre-reinforced composite materials. Due to their selectively adaptable characteristics profiles, they are clearly superior to conventional monolithic materials. Composites with textile reinforcement offer the highest flexibility for adaptation to reinforcing structures in to complex loading conditions. This study shows that the gas pressure infiltration technique was successfully assessed for manufacture of carbon fibre reinforced aluminium metal composites (CF/Al-MMCs), consisting of unidirectional as well as bidirectional Ni-coated carbon fibres with different Al-alloy matrix systems. As wail as investigating of the deformation and failure behaviour of CF/Al-MMCs, their thermo-physical properties, were determined such as the coefficient of thermal expansion. Furthermore, fractographic analysis and closer microscopic inspections indicate they fail with a brittle fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.