Abstract

BackgroundAntimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major concern worldwide. It has been recently feared that the blaTEM-1 gene is, via blaTEM-135, evolving into an extended-spectrum β-lactamase (ESBL), which could degrade all cephalosporins including ceftriaxone. The aims of the present study were to characterize the blaTEM genes, types of β-lactamase plasmids, the degradation of ampicillin by TEM-135 compared to TEM-1, and to perform molecular epidemiological typing of β-lactamase-producing N. gonorrhoeae strains internationally.Methodsβ-lactamase producing N. gonorrhoeae isolates (n = 139) cultured from 2000 to 2011 in 15 countries were examined using antibiograms, blaTEM gene sequencing, β-lactamase plasmid typing, and N. gonorrhoeae multiantigen sequence typing (NG-MAST). Furthermore, the blaTEM gene was sequenced in the first described Toronto plasmid (pJD7), one of the first Asian plasmids (pJD4) and African plasmids (pJD5) isolated in Canada. The degradation of ampicillin by TEM-135 compared to TEM-1 was examined using a MALDI-TOF MS hydrolysis assay.ResultsSix different blaTEM sequences were identified (among isolates with 125 different NG-MAST STs), i.e. blaTEM-1 (in 104 isolates), blaTEM-135 (in 30 isolates), and four novel blaTEM sequences (in 5 isolates). The blaTEM-1 allele was only found in the African and Asian plasmids, while all Rio/Toronto plasmids possessed the blaTEM-135 allele. Most interesting, the first described gonococcal Toronto plasmid (pJD7), identified in 1984, also possessed the highly conserved blaTEM-135 allele. The degradation of ampicillin by TEM-135 compared to TEM-1 was indistinguishable in the MALDI-TOF MS hydrolysis assay.ConclusionsblaTEM-135, encoding TEM-135, is predominantly and originally associated with the Rio/Toronto plasmid and prevalent among the β-lactamase producing gonococcal strains circulating globally. blaTEM-135 does not appear, as previously hypothesized, to have recently evolved due to some evolutionary selective pressure, for example, by the extensive use of extended-spectrum cephalosporins worldwide. On the contrary, the present study shows that blaTEM-135 existed in the Toronto plasmid from its discovery and that blaTEM-135 is highly conserved (not further evolved in the past >30 years). Nevertheless, international studies for monitoring the presence of different blaTEM alleles, the possible evolution of the blaTEM-135 allele, and the types of β-lactamase producing plasmids, remain imperative.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2334-14-454) contains supplementary material, which is available to authorized users.

Highlights

  • Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major concern worldwide

  • The present study shows that blaTEM-135 existed in the Toronto plasmid from its discovery and that blaTEM-135 is highly conserved

  • The present study investigated the characteristics of blaTEM genes and their association with β-lactamase plasmid type, the degradation of ampicillin by TEM-135 compared to TEM-1, and the molecular epidemiology of international β-lactamase-producing N. gonorrhoeae isolates

Read more

Summary

Introduction

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major concern worldwide. Neisseria gonorrhoeae has developed resistance to all antimicrobials previously recommended for first-line empiric monotherapy, such as penicillins, tetracyclines, macrolides and fluoroquinolones [2,3,4,5]. Clinical resistance to the extended-spectrum cephalosporins (ESCs) has been verified in the latest years in many countries [6,7,8,9,10,11,12,13,14,15,16,17,18,19]. The first three extensively-drug resistant (XDR [3]) gonococcal strains were recently described; all displayed a high-level of resistance to ceftriaxone, the last remaining option for empiric first-line antimicrobial monotherapy in most countries globally [9,18,20]. All the reported decreased susceptibility and resistance to ESCs has been due to an accumulation of chromosomal resistance determinants [2,4,5]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.