Abstract

Initial results are reported from a study aimed to investigate the role and influence of the elements Cr, Ni, Mn and Si on the radiation stability of reactor pressure vessel steels. Twelve as cast model ferritic steels with basic composition typical of those used in Russian WWER-1000 and Western PWR reactor pressure vessel materials were subjected to Charpy impact, magnetic Barkhausen noise (MBN), Vickers hardness tests and SEM examination. Higher Cr content in model steels was found generally to give increased RMS values independent of Mn and Si contents. The ductile–brittle transition temperatures (DBTT) and hardness values of the model steels were found to be independent of composition. Two steels, with low concentration of Ni and high concentration of Cr or vice versa , showed high transition temperatures (−16 and −42°C respectively). An additional heat treatment to improve the properties is being considered for these compositions. The correlation between DBTT and MBN results has potential for rapid determination of the effect of composition and irradiation on the steel properties. The next stage of the assessment will investigate the effect of irradiation of the model steels to accumulated neutron fluences of ∼1019 cm−2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.