Abstract

Recent clinical isolates of Leishmania donovani from the hyperendemic zone of Bihar were characterised in vitro in terms of their sensitivity towards sodium stibogluconate in a macrophage culture system. The resulting half maximal effective concentration (EC 50) values were compared with those of known sensitive isolates. Fifteen of the isolates showed decreased sensitivity towards SSG with an average EC 50 of 25.7 ± 4.5 μg/ml pentavalent antimony (defined as antimony resistant), whereas nine showed considerable sensitivity with an average EC 50 of 4.6 ± 1.7 μg/ml (defined as antimony sensitive). Out of those nine, seven were recent clinical isolates and the remaining two were known sensitive isolates. Compared with the antimony sensitive, resistant isolates showed enhanced expression of thiol metabolising enzymes in varying degrees coupled with increased intracellular non-protein thiol content, decreased fluorescence anisotropy (inversely proportional with membrane fluidity) and over-expression of the terminal glycoconjugates ( N-acetyl- d-galactosaminyl residue). Macrophages infected with resistant but not with sensitive showed up-regulation of the ATP Binding Cassette transporter multidrug resistance protein 1 and permeability glycoprotein, while the supernatant contained abundant IL-10. The above results reinforce the notion that antimony resistant parasites have undergone a number of biochemical and biophysical changes as part of their adaptation to ensure their survival in the host.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.