Abstract

The mature human erythrocyte is a simple haemoglobin-containing cell with no internal organelles and no protein synthesis machinery. The malaria parasite invades this cell and develops inside a parasitophorous vacuole (PV). The parasite exports proteins into the erythrocyte to bring about extensive remodelling of its adopted cellular home. Plasmodial homologues of two COPII proteins, PfSar1p and PfSec31p, are exported to the erythrocyte cytosol where they appear to play a role in the trafficking of proteins across the erythrocyte cytoplasm [Eur. J. Cell Biol. 78 (1999) 453; J. Cell Sci. 114 (2001) 3377]. We have now characterised a homologue of the COPI protein, δ-COP. A recombinant protein corresponding to 90% of the Pfδ-COP sequence was used to raise antibodies. The affinity-purified antiserum recognised a protein with an apparent M r of 58×10 3 on Western blots of malaria parasite-infected erythrocytes but not on blots of uninfected erythrocytes. Pfδ-COP was shown to be largely insoluble in non-ionic detergent, possibly suggesting cytoskeletal attachment. Confocal immunofluorescence microscopy of parasitised erythrocytes was used to show that, in contrast to the COPII proteins, Pfδ-COP is located entirely within the parasite. The location of Pfδ-COP partly overlaps that of the endoplasmic reticulum (ER)-located protein, PfERC, and partly that of the trans-Golgi-associated protein, PfRab6. Treatment of ring-stage plasmodium-infected erythrocytes with brefeldin A (BFA) inhibited development of the ER structure within the parasite cytosol and prevented the trafficking of the P. falciparum erythrocyte membrane protein-1, PfEMP1, to the erythrocyte cytosol. The Pfδ-COP and PfSec31p populations each appear to be associated with the restricted ER structure in brefeldin-treated rings. When more mature stage parasites were treated with BFA, erythrocyte cytosol-located populations of parasite proteins were not reorganised, however, the overlap between Pfδ-COP and PfERC in parasite cytosol was more complete suggesting a possible redistribution of the Golgi compartment into the ER. These data support the suggestion that both COPI and COPII proteins are involved in the trafficking of proteins within the parasite cytoplasm. However, only COPII proteins are exported to the erythrocyte cytosol to establish a vesicle-mediated protein trafficking pathway to the erythrocyte membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.