Abstract

Renewable energy integration in power systems and increasing electrification of energy demand create new challenges to which energy flexibility can provide effective solutions. Trough an innovative use of cumulative energy consumption curves, which represent the maximum and minimum energy limits, as well as the associated flexible energy consumption, this paper presents a methodology to characterise and use the energy flexibility provided by water pumping and storage systems (WPSS) in order to achieve specific objectives at different levels of power systems. The methodology is applied to a case study considering a real WPSS where energy flexibility is used to reduce electricity costs and support the operation of the power system during a wind generation curtailment event. Collected results show that savings around 16% can be achieved while reducing pumping cycles by 57%. Furthermore, the WPSS operation can be modified according to the needs of the power system using the available energy flexibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.