Abstract

Acinetobacter baumannii has become one of the most challenging conditional pathogens in health facilities. It causes various infectious diseases in humans, such as wound or urinary tract infections and pneumonia. Phage therapy has been used as an alternative strategy for antibiotic-resistant A. baumannii infections and has been approved by several governments. Previously, we have reported two potential phage therapy candidates, Abp1 and Abp9, both of which are narrow-host-range phages. In the present study, we screened and isolated 22 A. baumannii bacteriophages from hospital sewage water and determined that Abp95 has a wide host range (29%; 58/200). The biological and genomic characteristics and anti-infection potential of Abp95 were also investigated. Abp95 belongs to the Myoviridae family, with a G+C content of 37.85% and a genome size of 43,176 bp. Its genome encodes 77 putative genes, none of which are virulence, lysogeny, or antibiotic resistance genes. Abp95 was found to accelerate wound healing in a diabetic mouse wound infection model by clearing local infections of multidrug-resistant A. baumannii. In conclusion, the lytic phage Abp95, which has a wide host range, demonstrates potential as a candidate for phage therapy against multiple sequence types of carbapenem-resistant A. baumannii.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call