Abstract

The long-term and short-term anisotropic mechanical behaviour of a biaxially stretched polyethylene terephthalate foil is measured. The orientation of the crystalline phase is characterized and the representative foil microstructure is discussed. Using the obtained information, a mean-field model is used to simulate the elasto-viscoplastic behaviour of the oriented polymer foil, taking into account the different constitutive behaviour of the phases. The material is modelled as an aggregate of connected two-phase domains. The parameters of the constitutive behaviour of the crystalline and non-crystalline phases have been determined, and the ability to simulate the large-strain anisotropic behaviour of polyethylene terephthalate in the strain-rate-controlled regime and the long-term creep has been demonstrated. The model is extended to include pre-orientation of the non-crystalline phase. In addition, deformation at the microscopic level is analysed using the model results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.