Abstract

Pure silica MCM-41 mesoporous molecular sieve material was synthesised and characterised by in situ synchrotron XRD, TEM, TGA/DTA and DRIFTS techniques. In situ energy dispersive XRD (EDXRD) confirmed the exact nature of the pore diameter of MCM-41 and the change in crystal structure on calcination. The IR band at 1057 cm-1 of as-synthesised MCM-41 was shifted by 14 cm-1 on heating to 673 K due to increased condensation of silanol groups to form Si-O-Si bridges. Calcined MCM-41 materials were used to support Pd, and the catalytic activities for 1-hexene and benzene selective hydrogenation were investigated. The Pd/MCM-41 catalyst showed high activity in hydrogenation of 1-hexene at an inlet reaction temperature of 298 K, but did not show any activity in hydrogenation for benzene. TEM results for the reduced Pd/MCM-41 catalysts revealed that the average Pd particle size was around 2-2.5 nm and these particles were located in the pores of MCM-41 and showed good distribution. TPR measurements showed that about 70% of palladium oxide (PdO) loading in the calcined catalysts was reduced at sub-ambient temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.