Abstract

A number of supported cobalt catalysts for Fischer–Tropsch synthesis were considered. Catalysts were prepared by impregnation of the supports with a cobalt precursor resulting in cobalt concentrations of 15 or 20 wt%. The active metal was supported onto aluminum oxide, titanium dioxide and silicon carbide supports while rhenium or ruthenium metals were used as promoters, whose concentrations were 0, 0.2 or 1.0 wt%. The catalysts were characterized by a number of methods including BET, chemisorption, and XRD. Some of the catalysts were tested for catalytic activity and selectivity in the Fischer–Tropsch reaction using a fixed bed reactor. Based on the results, the addition of promoter metals increases the dispersion of the active metal cobalt and correspondingly a decrease in the cobalt metal particles, this effect was most evident for the alumina supported catalysts. Further, increased concentrations of the ruthenium promoter (1.0 wt%) slightly increased the selectivity to CH4 and decreased selectivity to C5+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call