Abstract

This paper presents a vehicle license plate recognition method using deep convolutional neural networks. The focus of this paper is placed on the recognition of segmented characters of vehicle license. The deep convolutional neural network is able to distinguish numbers (0 to 9), alphabets (A to Z) and background image from one another. We show that the neural networks trained on computer fonts and natural images can be used to recognize the characters and non-characters on the vehicle license plates. In our experiments, we compared several models of the deep learning model and measure the performance of each model. We find that deeper models of neural networks yield better recognition results. What also find that the deep convolutional neural network is much more robust at the task of character recognition compared to the deep multilayer perceptron. With approximately equal amount of weights and biases parameters, the deep convolutional neural network outperforms all other models on the same task. Our best model using deep convolutional network, can achieve 95.89% correct classification of real license plate characters when even though the network is only trained on computer fonts (from Chars74K dataset) and natural images (from CIFAR10 dataset). No data augmentation is performed during the training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.