Abstract
Optical character recognition (OCR) is used to digitize texts in printed documents and camera images. The most basic step in the OCR process is character recognition. The Arabic language is more complex than other alphabets, as the cursive is written in cursive and the characters have different spellings. Our research has improved a character recognition model for Arabic texts with 28 different characters. Character recognition was performed using Convolutional Neural Network models, which are accepted as effective in image processing and recognition. Three different CNN models have been proposed. In the study, training and testing of the models were carried out using the Hijja data set. Among the proposed models, Model C with a 99.3% accuracy rate has obtained results that can compete with the studies in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.