Abstract
The fundamental transitions that contribute to the diffuse OH stretching spectrum of water are known to increase in width and intensity with increasing red shift from the free OH frequency. In contrast, the profile of the higher-energy combination band involving the OH stretching and the intramolecular HOH bending modes displays a qualitatively different spectral shape with a much faster falloff on the lower-energy side. We elucidate the molecular origin of this difference by analyzing the shapes of the combination bands in the IR spectra of cryogenically cooled H3O+(H2O)20 and D3O+(D2O)20 clusters. The difference in the shapes of the bands is traced to differences in the dependence of their transition dipole matrix elements on the hydrogen-bonding environment. The fact that individual transitions across the combination band envelope have similar intensities makes it a useful way to determine the participation of various sites in extended H-bonding networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.